Four-dimensional lattice rules generated by skew-circulant matrices

نویسندگان

  • James N. Lyness
  • Tor Sørevik
چکیده

We introduce the class of skew-circulant lattice rules. These are s-dimensional lattice rules that may be generated by the rows of an s×s skewcirculant matrix. (This is a minor variant of the familiar circulant matrix.) We present briefly some of the underlying theory of these matrices and rules. We are particularly interested in finding rules of specified trigonometric degree d. We describe some of the results of computer-based searches for optimal four-dimensional skew-circulant rules. Besides determining optimal rules for δ = d+ 1 ≤ 47, we have constructed an infinite sequence of rules Q̂(4, δ) that has a limit rho index of 27/34 ≈ 0.79. This index is an efficiency measure, which cannot exceed 1, and is inversely proportional to the abscissa count.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Five- and six-dimensional lattice rules generated by structured matrices

We describe the results of a computer-based search for 5 and 6dimensional lattice rules of specified trigonometric degree. In this search only lattice rules that can be generated by a circulant or skew-circulant generator matrix are considered, which makes this approach significantly faster than earlier approaches. The drawback is that we do not necessarily obtain optimal lattice rules. We also...

متن کامل

On the Determinants and Inverses of Skew Circulant and Skew Left Circulant Matrices with Fibonacci and Lucas Numbers

Abstract: In this paper, we consider the skew circulant and skew left circulant matrices with the Fibonacci and Lucas numbers. Firstly, we discuss the invertibility of the skew circulant matrix and present the determinant and the inverse matrix by constructing the transformation matrices. Furthermore, the invertibility of the skew left circulant matrices are also discussed. We obtain the determ...

متن کامل

Exact Determinants of the RFPrLrR Circulant Involving Jacobsthal, Jacobsthal-Lucas, Perrin and Padovan Numbers

Circulant matrix family occurs in various fields, applied in image processing, communications, signal processing, encoding and preconditioner. Meanwhile, the circulant matrices [1, 2] have been extended in many directions recently. The f(x)-circulant matrix is another natural extension of the research category, please refer to [3, 11]. Recently, some authors researched the circulant type matric...

متن کامل

A circulant approach to skew-constacyclic codes

We introduce circulant matrices that capture the structure of a skew-polynomial ring F[x; θ] modulo the left ideal generated by a polynomial of the type x − a. This allows us to develop an approach to skew-constacyclic codes based on such circulants. Properties of these circulants are derived, and in particular it is shown that the transpose of a certain circulant is a circulant again. This rec...

متن کامل

The Gaussian Fibonacci Skew-Circulant Type Matrices

Abstract: Let be a Gaussian Fibonacci skew-circulant matrix, and be a Gaussian Fibonacci left skew-circulant matrix, and both of the first rows are , where is the th Gaussian Fibonacci number, and is a nonnegative integer. In this paper, by constructing the transformation matrices, the explicit determinants of and are expressed. Moreover, we discuss the singularities of these matrices and the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2004